侵权投诉
订阅
纠错
加入自媒体

泊车辅助系统中的车位线自动检测与识别

2014-07-03 09:50
Hsiao Chen
关注

  1.3 形态学处理

  可以看到,在图像分割完成后,不免存在着一些二值噪点,为此,考虑利用形态学对图像进行处理。对二值图像进行形态学处理的基本思想是运用一个预先定义好的简单结构元素去探测图像,看这个结构元素能否填放在该图像内部,并验证填放结构元素方法的有效性。最基本的形态学运算是腐蚀和膨胀,二者互为对偶运算。腐蚀是将区域的内边界点变为背景,使边界向内部收缩,在这个过程中,小且无意义的物体将被消除;而膨胀则是将区域的外边界点变为对象点,使边界向外部扩张。

泊车辅助系统中的车位线自动检测与识别

  为利用结构元素B膨胀集合A,可将B相对原点旋转180°,得到-B,再利用-B对AC进行腐蚀,腐蚀结果的补集就是所求的结果。

  对输入图像进行先腐蚀后膨胀,具有平滑功能,通常用于消除小对象物、在纤细点处分离物体、平滑较大物体边界的同时并不明显改变其体积,且图像细节得以保留。图5是经过先腐蚀后膨胀得到的结果,可以看到经过形态学处理后的二值化图像已经滤掉了部分噪点,便于下一步的识别处理。

泊车辅助系统中的车位线自动检测与识别

  2 Hough变换检测车位线

  2.1 基于中值的自适应Canny边缘检测

  边缘是图像特征的一个重要属性,蕴含了大量的信息,能勾勒出目标物体,因此边缘检测技术是图像处理中一类重要的分析方法。Can ny算子是最常用的边缘检测方法。Canny算法的步骤可归纳为:

  (1)去噪。因为Canny边缘检测算子对于未经处理的原始图像中的噪声是敏感的,所以它采用高斯模板与原始图像作卷积,得到的结果与原始图像相比,有轻微的模糊。这样,单独的一个噪声像素在经过高斯平滑的图像上变得基本没有影响。

  (2)查找图像的亮度梯度。图像的一个边缘可能指向不同的方向,所以Canny算法运用4个模板分别检测去噪图像中的垂直、水平、对角线边缘。利用边缘检测算子(如Roberts,Prewitt,Sobel)分别计算出水平和垂直方向的一阶导数Gx和Gy由此可以得到边缘的梯度和方向

泊车辅助系统中的车位线自动检测与识别

  (3)跟踪图像边缘,选择滞后阈值。较大的亮度梯度更有可能被认为是边缘,但在多种情况下,指定一个阈值来确定某个梯度是否为边缘是不可能的,因此Canny采用了滞后阈值。

  滞后阈值需要高低两个阈值。假设图像中的重要边缘都是连续曲线,这样可以跟踪给定曲线中模糊的部分,并丢掉一些虽然产生了大的梯度但没有组成曲线的噪声像素。所以从一个较大的阈值开始,这将标识出那些确信的边缘。从真正的边缘开始,并利用前面导出的方向信息,在图像中跟踪整个的边缘。在边缘跟踪时采用低阈值,这样就可以跟踪曲线的模糊部分直至回到起点。

  这个过程一旦完成,就可得到一个二值图像,其中的每个点表示是否是一个边缘点。

  与使用一个阈值相比,Canny边缘检测算法使用两个阈值使得操作更加灵活,但还是存在的普遍问题,阈值设置过高,重要信息就可能被漏掉;阈值设置过低,干扰信息又会被看的重要。难以给出适用于所有图像的通用阈值问题。

  采用的解决方法首先是计算图像的中值median,然后根据以下公式为高阈值high_thresh和低阈值low_thresh赋值,调用Canny边缘检测算法对图像进行边缘检测。

  high_thresh=0.66×median;

  low_thresh=0.33×median; (4)

  图6和图7分别显示了经典Canny边缘检测和基于中值的Canny边缘检测结果,其中图6是经过手动调整到最佳结果产生的图像,图7是利用自动设定阈值得到的结果,从中可以看出基于中值的Canny边缘检测算法可以实现自动边缘检测的目的。

泊车辅助系统中的车位线自动检测与识别

  2.2 Hough变换

  霍夫变换(Hough Transform)是一种检测直线和解析曲线的有效方法。它把二值图像变换到Hough参数空间,利用参数空间极值点的检测来实现目标的检测。霍夫变换不但可以用于检测图像中的直线,还可以扩展到任意曲线的识别,多为圆和椭圆。

  运用两个坐标空间之间的变换,霍夫变换将在一个空间中具有相同形状的曲线映射到另一个坐标空间的一个点上形成峰值,因此,霍夫变换把曲线的检测问题转换到参数空间中对点的检测问题,通过在参数空间里进行简单的累加统计完成检测任务。

  考虑直角坐标系中的一点(x0,y0),经过该点直线的一般方程可以写为

  ρ=x0cosθ+y0sinθ (5)

  参数ρ和θ可以唯一地确定一条直线,这在ρ-θ空间内是一条正弦曲线。若将x—y平面内同一条直线的点列变换到ρ-θ空间,则所以正弦曲线都经过一点(ρ’,θ’),所以正弦曲线在ρ-θ空间其他各处都不相交。因此,X—Y平面内一条直线上的无数点变换到ρ—θ空间内时,经过(ρ’,θ’)的次数为无穷,经过其他各处次数都为1。也就是说,Hough变换将X—Y平面内的一条直线映射到了ρ—θ空间中的一个点。因此,Hough变换把直线检测问题转换到参数空间里对点的检测问题,通过在参数空间里进行简单的累加统计完成检测任务。

  图8为将Hough变换应用到边缘检测图中得到的初始结果。

泊车辅助系统中的车位线自动检测与识别

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号