侵权投诉
订阅
纠错
加入自媒体

人脸识别图像处理技术及其应用

  人脸布控系统出击高密度人流量安全管理

  针对高密度人流量区域的安全管理,人脸布控系统以其短时间内实现多目标人脸抓取、识别检测的高效性能奠定了在行业领域不可取代的地位,不过,由于现阶段传统的监控系统大部分依旧存在图像清晰度低的缺陷,以及受光线、遮挡、年龄等因素的影响,导致系统在进行人脸识别过程时出现比对速度慢、对比结果不精确等,如何提升人脸识别的精准度成为人脸布控系统深化其应用价值的关键!

  基于人脸识别技术的快速发展,现人脸布控系统在平安城市、交通、公安、金融、电力、司法、通信、酒店、展馆等行业已广泛应用,特别是通关口岸,车站,地铁站,机场等人流密集区域。人流量巨大,在这些人员密集区域进行人脸布控,可实现搜捕嫌疑犯、逃犯等功能,但是在实际应用中,人脸识别技术本身还有待进一步发展,特别是对于动态的人脸检测,夜景环境下,传统的监控系统依旧存在着大部分图像清晰度低的情况。现有的人脸识别方法对于人脸姿态变化、光照、表情、遮挡、年龄、模糊等一系列实际情况还需进一步提高,另外,由于人脸识别技术的实际应用实时性要求比较高,因此需要设计更高效更准确的识别算法,以便快速精准地识别犯罪分子,保证社会的长治久安。

  常规的人脸识别流程为人脸检测、特征提取、人脸识别,在特征提取前先对人脸图像进行预处理,能有效的提高最终的识别效率及准确度。

人脸识别图像处理技术及其应用

  人脸图像预处理技术

  人脸图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。

  图像是人类获取信息、表达信息和传递信息的重要手段。利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术称为数字图像处理。

  数字图像处理技术已经成为信息科学、计算机科学、工程科学、地球科学等诸多方面的学者研究图像的有效工具。数字图像处理主要包括图像变换、图像增强、图像编码、图像复原、图像重建、图像识别以及图像理解等内容。数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础,也是图像识别中提取图像特征的一个重要属性,边缘检测算子可以检查每个像素的邻域并对灰度变化率进行量化。

  空域滤波按照空域滤波器的功能又可分为平滑滤波器和锐化滤波器。平滑滤波器可以用低通滤波实现,目的在于模糊图像或消除噪声;锐化滤波器是用高通滤波来实现,目的在于强调图像被模糊的细节。

1  2  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

安防 猎头职位 更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号