侵权投诉
当前位置:首页 > 搜索

世界上最强大的X射线激光器——LCLS-II近日宣布即将投入使用。作为斯坦福大学直线加速相干光源(LCLS)的强大升级,LCLS-II利用比深空更低的温度将电子加速到接...

斯图加特大学IFSW研究所的研究人员利用高速X射线视频成像设备(用于激光材料加工诊断),进一步研究了解动态光束激光(DBL)技术的使用,以提高工业焊接应用中的锁孔稳定性。

2009年4月,世界上第一台硬X射线自由电子激光器(XFEL)在美国能源部的SLAC国家加速实验室产生了第一束光。直线加速相干光源The Linac Coherent...

根据核物理的理论,控制受控核聚变需要高能量。但是,利用X射线的最新自由电子激光器提供的能量和电磁场,可以在较低能量下引发核聚变,德国德累斯顿-罗森多夫亥姆霍兹中心(HZD...

据外媒报道,作为全球首个能产生X射线激光设施,欧洲X射线自由电子激光装置已经发射了首个激光脉冲,也是9月正式投入使用前的最后一个重要里程碑。

科学界下一代这种开拓新技术即将到来,LCLS正在进行重大升级。

我国激光产业在激光器方面一致受制于人,反观国外对于各种新型激光器的研发一直都没有停止过。近几年随着一些新型激光器产品的推出,国内外之间的差距正在逐渐缩小。我国在一些激光前...

自第一台光纤激光器构建和投入使用后,开发设计更强的X射线(即>10keV)激光系统就被提上了日程。

硅芯片的时代即将一去不复返!计算机芯片的细微设计变化可能将帮助打造更微型、更快速且更加强大的计算机。

美国政府某顾问小组近日提议,美国应建造一种功能强大的新型X射线激光器

研究小物件通常需要大机器。例如,激光器研究单原子需要大型设备加速电子产生的高能量x射线辐射。

研究人员宣布,他们成功在开发下一代X射线自由电子激光脉冲更明亮、更稳定的技术方面迈出了重要一步:使用由高质量合成金刚石制成的精确对准的镜子,引导X射线激光脉冲在真空室内的...

近日,维也纳工业大学(TU Wien)的一组研究人员宣布开发出一种新的、更简单、更有效的X射线激光脉冲产生技术。它并不是利用钛蓝宝石激光器,而是利用镱激光器

2023年2月2日晚,位于美国亚利桑那州立大学的紧凑型X射线光源(CXLS)成功发射了第一束X射线,它将有望让科学家们在原子水平上观察各种关键的化学反应与生物结构。

强烈、极短波X射线脉冲在纳米波长范围内很难产生,但目前,TU Wien(奥地利维也纳技术大学)已经开发出一种新的、更简单的方法。该方法的起点不是钛蓝宝石激光器,而是镱激光...

2023年初,在加利福尼亚地下隧道中以接近光速飞行的电子将产生地球上有史以来最亮的X射线,使科学家们能够以前所未有的细节来研究原子和分子。

近期,密歇根大学新建成的一个设施宣布将在本周将举行它的首次调试实验,该设施将成为美国最强大的激光器,也是世界上最强大的激光系统之一。

X射线可分为波长较长的软X射线和波长较短的硬X射线,软X射线的波长在0.1 nm到10 nm之间,其中2.34 nm到4.4 nm的波段位于氧原子和碳原子K吸收带之间,相...

不知不觉间,从1960年第一台激光器到现在,六十年弹指一挥间,激光雷达从最初的远程测距到眼科检查,再到推动扫地机器人进入千家万户。自动驾驶时代的到来,激光雷达更是站到了舞...

本文系基于公开资料撰写,仅作为信息交流之用,不构成任何投资建议。不知不觉间,从1960年第一台激光器到现在,六十年弹指一挥间,激光雷达从最初的远程测距到眼科检查,再到推动...

更多>>

文档下载

2024机器人行业创新发展应用蓝皮书

为积极响应工信部等十七部门联合印发的《“机器人+”应用行动实施方案》,推动“机器人+ ...

两种尺寸TiC颗粒对线材和电弧增材制造Al-Cu合金延展性--强度协同作用的影响

文档来源:利元亨

粤公网安备 44030502002758号