订阅
纠错
加入自媒体

深兰科技|目标检测二十年间的那些事儿

2020-07-31 10:00
深兰科技
关注

(2) HOG 检测器

方向梯度直方图(HOG)特征描述器最初是由N. Dalal和B.Triggs在2005年提出的[11]。HOG对当时的尺度不变特征变换(scale-invariant feature transform)和形状语境(shape contexts)做出重要改进。为了平衡特征不变性 ( 包括平移、尺度、光照等 ) 和非线性 ( 区分不同对象类别 ),HOG描述器被设计为在密集的均匀间隔单元网格(称为一个“区块”)上计算,并使用重叠局部对比度归一化方法来提高精度。虽然HOG可以用来检测各种对象类,但它的主要目标是行人检测问题。如若要检测不同大小的对象,则要让HOG检测器在保持检测窗口大小不变的情况下,对输入图像进行多次重设尺寸(rescale)。这么多年来,HOG检测器一直是许多目标检测器和各种计算机视觉应用的重要基础。

方向梯度直方图(HOG),计算出每个像素朝四周的梯度方向和梯度强度,并统计形成梯度直方图

(3) 基于可变形部件的模型(DPM)

DPM作为voco -07、-08、-09届检测挑战赛的优胜者,它曾是传统目标检测方法的巅峰。DPM最初是由P. Felzenszwalb提出的[12],于2008年作为HOG检测器的扩展,之后R. Girshick进行了各种改进[13][14]。

DPM遵循“分而治之”的检测思想,训练可以简单地看作是学习一种正确的分解对象的方法,推理可以看作是对不同对象部件的检测的集合。例如,检测“汽车”的问题可以看作是检测它的窗口、车身和车轮。工作的这一部分,也就是“star model”由P.Felzenszwalb等人完成。后来,R. Girshick进一步将star model扩展到 “ 混合模型 ”,以处理更显著变化下的现实世界中的物体。

一个典型的DPM检测器由一个根过滤器(root-filter)和一些零件滤波器(part-filters)组成。该方法不需要手动设定零件滤波器的配置(如尺寸和位置),而是在开发了一种弱监督学习方法并使用到了DPM中,所有零件滤波器的配置都可以作为潜在变量自动学习。R. Girshick将这个过程进一步表述为一个多实例学习的特殊案例,同时还应用了“困难负样本挖掘(hard-negative mining)”、“边界框回归”、“语境启动”等重要技术以提高检测精度。而为了加快检测速度,Girshick开发了一种技术,将检测模型“ 编译 ”成一个更快的模型,实现了级联结构,在不牺牲任何精度的情况下实现了超过10倍的加速。

虽然今天的目标探测器在检测精度方面已经远远超过了DPM,但仍然受到DPM的许多有价值的见解的影响,如混合模型、困难负样本挖掘、边界框回归等。2010年,P. Felzenszwalb和R. Girshick被授予PASCAL VOC的 “终身成就奖”。

基于卷积神经网络的双级检测器

随着手动选取特征技术的性能趋于饱和,目标检测在2010年之后达到了一个平稳的发展期。2012年,卷积神经网络在世界范围内重新焕发生机[15]。由于深卷积网络能够学习图像的鲁棒性和高层次特征表示,一个自然而然的问题是:我们能否将其应用到目标检测中?R. Girshick等人在2014年率先打破僵局,提出了具有CNN特征的区域(RCNN)用于目标检测[16]。从那时起,目标检测开始以前所未有的速度发展。在深度学习时代,目标检测可以分为两类:“双级检测(two-stage detection)” 和 “单级检测(one-stage detection)”,前者将检测框定为一个“从粗到细 ”的过程,而后者将其定义为“一步到位”。

双级检测的发展及各类检测器的结构[2]

(1) RCNN

RCNN[17]的思路很简单:它首先通过选择性搜索来提取一组对象作为“提案(proposal)”并当做对象的候选框。然后将每个提案重新调整成一个固定大小的图像,再输入到一个在ImageNet上训练得到的CNN模型(如AlexNet) 来提取特征。最后,利用线性SVM分类器对每个区域内的目标进行预测,识别目标类别。RCNN在VOC07测试集上有明显的性能提升,平均精准度 (mean Average Precision,mAP) 从33.7%(DPM-v5) 大幅提高到58.5%。

虽然RCNN已经取得了很大的进步,但它的缺点是显而易见的:需要在大量重叠的提案上进行冗余的特征计算 (一张图片超过2000个框),导致检测速度极慢(使用GPU时每张图片耗时14秒)。同年晚些时候,有人提出了SPPNet并克服了这个问题。

(2) SPPNet

2014年,K. He等人提出了空间金字塔池化网络( Spatial Pyramid Pooling Networks,SPPNet)[18]。以前的CNN模型需要固定大小的输入,例如AlexNet需要224x224图像。SPPNet的主要贡献是引入了空间金字塔池化(SPP)层,它使CNN能够生成固定长度的表示,而不需要重新调节有意义图像的尺寸。利用SPPNet进行目标检测时,只对整个图像进行一次特征映射计算,然后生成任意区域的定长表示以训练检测器,避免了卷积特征的重复计算。SPPNet的速度是R-CNN的20多倍,并且没有牺牲任何检测精度(VOC07 mAP=59.2%)。

SPPNet虽然有效地提高了检测速度,但仍然存在一些不足:第一,训练仍然是多阶段的,第二,SPPNet只对其全连接层进行微调,而忽略了之前的所有层。而次年晚些时候出现Fast RCNN并解决了这些问题。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

人工智能 猎头职位 更多
扫码关注公众号
OFweek人工智能网
获取更多精彩内容
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号