订阅
纠错
加入自媒体

《人工智能之认知图谱》重磅发布(附报告全文下载)

2020-08-28 09:10
学术头条
关注

【导读】近日,由清华大学人工智能研究院、北京智源人工智能研究院、清华—中国工程院知识智能联合研究中心、阿里集团—新零售智能引擎事业群编写的《人工智能之认知图谱》报告正式发布。报告显示,以知识图谱、认知推理、逻辑表达等技术为支撑的认知图谱是实现机器认知智能的使能器,不仅让机器理解数据的本质,还可以让机器解释现象的本质。

1956 年,人工智能概念提出以后,经过六十多年的发展,人工智能在计算能力、大数据和深度学习的支撑下取得显著成果。根据人工智能解决问题的不同阶段,人工智能发展历程可以分为:计算智能、感知智能、认知智能、意识智能(见图 1)。计算智能让机器能存会算;感知智能让机器能听会说、能看会认;认知智能解决机器能理解会思考的问题;意识智能是近期图灵奖获得者 Manuel Blum 夫妇提出的全新思想,核心理念是构造一个新型的可用数学建模、可计算的机器认知/意识模型。

图 1人工智能发展的几个阶段

如何实现认知智能,清华大学唐杰教授提出了结合知识图谱、认知推理、逻辑表达等关键技术的认知图谱(Cognitive Graph)是一种有力的支撑手段,希望利用知识表示、推理和决策,包括人的认知来解决复杂问题。这个思路的基本思想是结合认知科学中的双通道理论,在人脑的认知系统中存在两个系统:System 1 和 System 2,如图 2 所示。System 1 是一个直觉系统,它可以通过人对相关信息的一个直觉匹配寻找答案,它是非常快速、简单的;而 System 2 是一个分析系统,它通过一定的推理、逻辑找到答案。

图 2 双通道理论框架

让机器具备认知智能,其核心就是让机器具备理解和解释能力。这种能力的实现与大规模、结构化的背景知识是密不可分的。结合认知心理学、脑科学和人类知识等,以知识图谱、认知推理、逻辑表达等技术为支撑的认知图谱是实现机器认知智能的使能器,利用结构化的实体、概念、关系等构成元素,不仅让机器理解数据的本质,还可以让机器解释现象的本质。

报告围绕认知图谱及其 3 个技术领域(知识图谱、认知推理、逻辑表达),从概念、发展历程、关键技术(如图 3 所示)、问题与挑战、未来研究方向等方面展开介绍,并进行了论文研究主题分析、经典论文解读,以及技术情报深入挖掘,旨在为读者了解认知图谱领域的基础和应用研究的代表性成果、以及研究动向和进展提供信息窗口。

图 3 认知图谱报告技术概览

报告借助 AMiner 科技情报大数据挖掘与服务系统平台,不仅深入分析了认知图谱领域的技术研究发展趋势和创新热点,以及中国的专利数据和国家自然科学基金项目支持情况,还从学者分布地图、学术水平分析、国际合作分析、学者流动情况等维度,对比分析了中国和全球其他国家学者在该领域的发展状况,并给出了相应的对策建议,旨在为中国的学科布局和科技人才队伍建设提供数据支撑和指导。以下选取代表性的分析维度进行展示说明。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号