技术分析:基本的图像重建场景
2021-01-09 21:56
金翅创客
关注
金翅导读
深度学习在各种任务的预测建模方面取得了许多最新进展,但是公众仍然对神经网络的非直觉化泛化行为感到震惊,例如记忆标签改组数据的能力和对抗示例的脆弱性。为解释神经网络的泛化行为,目前已逐步取得了许多理论突破,包括研究随机梯度下降的性质,不同的复杂性度量,泛化差距,以及来自不同方面的更多信息模型或算法的观点。
本次分享一个基本的图像重建场景,其中包括降低低频语义分量和根据阈值半径进行高低频划分等方法。通过实验验证了学者们对于频率分量影响CNN模型优化的结论,其中发现了人类对于图像分类的基本过程与CNN是有所差异的。因此,观察结果导致了与CNN泛化行为相关的多种假设,包括对对抗性示例的潜在解释,对CNN鲁棒性和准确性之间的权衡的讨论,以及引用了一些国内外论文对于高等图像重建方法优化的实验。
往期 · 推荐

声明:
本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
最新活动更多
-
3月27日立即报名>> 【工程师系列】汽车电子技术在线大会
-
5月15-17日立即预约>> 【线下巡回】2025年STM32峰会
-
6月13日立即参评>> 【评选】维科杯·OFweek2025中国工业自动化及数字化行业年度评选
-
6月13日立即参评 >> 【评选】维科杯·OFweek 2025 传感器行业年度评选
-
6月13日立即参评 >> 【评选启动】维科杯·OFweek 2025(第十届)人工智能行业年度评选
-
6月20日立即下载>> 【白皮书】精准测量 安全高效——福禄克光伏行业解决方案
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论