使用Python+OpenCV实现神经网络预处理人脸图像的快速指南
2020-05-23 10:38
磐创AI
关注
前两幅图像的质量似乎更高(但你可以观察到一些压缩伪像)。线性方法的结果明显更平滑并且噪点更少。最后一个是像素化的。归一化我们可以使用normalize()函数应用视觉归一化,以修复非常暗/亮的图片(甚至可以修复低对比度)。该归一化类型(https://docs.opencv.org/3.4/d2/de8/group__core__array.html#gad12cefbcb5291cf958a85b4b67b6149f) 在函数参数中指定:norm_img = np.zeros((300, 300))norm_img = cv2.normalize(img, norm_img, 0, 255, cv2.NORM_MINMAX)例子:
当使用图像作为深度卷积神经网络的输入时,不需要应用这种归一化。在实践中,我们将对每个通道进行适当的归一化,比如减去平均值,然后除以像素级的标准差(因此我们得到平均值0和偏差1)。如果我们使用迁移学习,最好的方法总是使用预先训练的模型统计数据。结论在处理人脸分类/识别问题时,如果输入的图像不是护照图片,则检测和分离出人脸是一项常见的任务。OpenCV是一个很好的图像预处理库,不仅仅如此,它也是一个强大的工具,为许多计算机视觉应用…
来看文档吧!希望你喜欢这篇文章!

声明:
本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。
最新活动更多
-
3月27日立即报名>> 【工程师系列】汽车电子技术在线大会
-
6月13日立即参评>> 【评选】维科杯·OFweek2025中国工业自动化及数字化行业年度评选
-
6月13日立即参评 >> 【评选启动】维科杯·OFweek 2025(第十届)人工智能行业年度评选
-
6月20日立即下载>> 【白皮书】精准测量 安全高效——福禄克光伏行业解决方案
-
7.30-8.1火热报名中>> 全数会2025(第六届)机器人及智能工厂展
-
7月31日免费预约>> OFweek 2025具身机器人动力电池技术应用大会
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论