侵权投诉
订阅
纠错
加入自媒体

突破药研壁垒:病毒、脂质体、外囊泡、ADC

2021-09-06 11:43
动脉网
关注

药物递送一直是医药研发中永恒不变的话题,无论是化药还是生物药,几乎所有医药都会面临药物递送的问题,药物递送不仅影响最终药物发挥药效的作用,甚至成为决定药物研发成败的关键点。

例如,在基因治疗领域,AAV病毒载体的构建是业内公认制约整个产业发展的瓶颈。基因治疗领先药企辉大基因杨辉博士曾在受访中提到,规模化工业级别病毒载体包装生产是限制中国基因治疗产业化进程的重要因素,想要实现基因治疗产业从研发到落地工业级别的生产,就需要成熟的病毒工艺开发技术。

当然,除了基因治疗,小分子药、大分子药都离不开对递送技术的依赖,从体外微针注射递送小分子化学药剂,再到用脂质体(LNP)包裹大分子药物体内递送,医药领域中的递送系统的无处不在。甚至,医疗产业也独立分支出了专注于递送技术服务的CDMO赛道。

2020年,位于美国马萨诸塞州的生物技术公司Codiak登陆纳斯达克,成为美股市场首家专注于外泌体的上市药企,而外泌体正是一种天然存在的递送结构,Codiak通过定向改造外泌体使其具备特定运载功能,成为能够递送小分子、RNA、蛋白质等物质在内的“天然”载体;同年,成立仅一年的腺病毒载体基因治疗公司Taysha Gene Therapies也宣布登陆纳斯达克,公司以特有的腺病毒为载体递送基因药物去治疗GM2神经节苷脂沉积症,获得了FDA在该病症上的孤儿药和罕见儿科疾病指定用药。

2021年,基于脂质体(LNP)运载mRNA药物的生物技术公司Verve Therapeutics宣布IPO,旗下LNP-mRNA基因疗法将用于治疗动脉粥样硬化性心血管疾病(ACSVD)。

递送技术已经成为医疗产业中不可或缺的一环,但是递送技术产业全貌究竟是怎样的?目前,药物研发领域到底有哪些前沿的递送技术,各自孰优孰劣?又在医药研发中发挥着怎样的作用?作者采访了中国医药递送技术领域10余家前沿药企创始人,以及整理了大量递送技术相关文献资料,为读者梳理出整个递送技术产业全貌。

药物递送发展史:伴随需求提升下的技术升级

在临床上,药物递送至关重要,不仅仅是将药物送到病变部位那么简单,实际上药物递送系统主要承载着四大核心功能:药物靶向、药物控释、促进药物吸收、增强药物属性。其中,“促进药物吸收”和“药物靶向”是临床药物研发中需求最旺盛的两个方向。当然递送系统的功能往往不是单一存在的,而是多种功能并存共同作用。

图片1.png

例如,各类载体制剂能够实现“促进药物吸收”的作用,将一些本来难以直接穿越进入细胞内部的药物,通过各种载体表面修饰,增加药物穿透特定生物屏障(如血脑屏障、细胞膜)的能力,提高药效。同时,一些载体也能通过特定设计帮助药物实现“药物控释”,比如通过控制脂质体的载药量和释放速度,能够在保证疗效的前提下降低药物副作用。

另外,“药物控释”在一些慢病管理、眼病治疗等领域需求比较大。以湿性老年性黄斑病变(wAMD)为例,现阶段治疗最大的痛点是需要长年频繁地进行抗VEGF药物眼内注射, 绝大多数患者都因为顺应性问题而放弃治疗,最终导致视力降低甚至失明。艾伯维(abbvie)、再生元 (Regeneron)、罗氏(Roche)等公司均在布局针对wAMD的长效药物控释系统。 药物递送系统平台公司科凝生物(Pleryon Therapeutics)自主研发的动态孔径调控缓释系统,能够精准调控蛋白药物的缓释时间及曲线,实现抗VEGF药物在眼内长达六个月的缓释。

除了促进药物吸收、帮助药物控释,偶联靶向递送技术则可以根据偶联分子的不同实现更多不同的功能,例如连接聚乙二醇分子(PEG)可以增加药物分子的稳定性,连接单抗/多肽增加药物分子的靶向性等等。相较而言,偶联递送技术能够操作的空间更大,实现的功能更多,面向的递送内容物也更多样。

1971年,意外发现似膜结构,脂质体(LNP)率先登上递送舞台

1959年,人类在电镜下首次看到了细胞膜的磷脂双分子层结构;2年后,英国生物学家Alec Douglas Bangham和美国科学家R. W. Horne用经过负染的磷脂调试电子显微镜时,在电镜下观察到磷脂形成了类似细胞质膜的结构,这成为未来脂质体(LNP)诞生的雏形。

随后到1971年,英国科学家Gregoriadis等人首次将脂质体(LNP)用作药物载体,制成治疗制剂。从此,脂质体(LNP)作为一种新型药物载体登上新药研发的舞台。

由于脂质体(LNP)可采用冷冻干燥法制成冻干粉保存,只有当脂膜成分和装载药物接触到水环境时才会形成脂质体(LNP),这种独特的系统让脂质体(LNP)成为目前医药产业中使用最多、应用最广的药物载体。

1977年,基因治疗需求下,催生病毒载体

病毒载体因其本身具备感染细胞的能力,可将自身遗传物质(DNA/RNA)突破细胞膜植入到被感染细胞内部,再借助细胞内部原始的转录翻译工具组,实现病毒自身遗传物质的复制和繁殖。借助这套天然存在的工作机制,让科学家们看到了病毒作为递送载体的巨大潜力。

1977年,科学家们首度实现了以病毒作为载体运送“基因药物”到哺乳动物细胞中表达,将目标基因用以病毒外壳包装,借助病毒自身的感染机制,递送至靶细胞内部,最终完成“药物”递送。

病毒载体的出现,正是基因治疗概念提出后的第5年,距离DNA双螺旋结构被发现过去24年。从历史的进程中,我们不难发现,病毒载体更多是作为基因治疗产业发展中的一环而被应用,与此同期发展的还有DNA重组技术、PCR技术等,共同奠定了基因治疗领域的发展。

至今,病毒载体最大的应用场景还是在递送核酸药物(基因治疗)领域,市面上70%至80%的基因治疗方案依旧需要通过病毒载体完成。而借助病毒本身靶向毒性作用的溶瘤病毒则发展成为另一大子赛道。

2013年,天然递送载体“外囊泡(EVs)”步入产业研究

细胞外囊泡(extracellular vesicles,EVs)是细胞释放的微小囊泡,其中含蛋白质、miRNA等生物学活性分子。外囊泡(EVs)曾被视作细胞的“垃圾袋”,用于清除不必要的大分子,后发现外囊泡(EVs)表面拥有识别靶细胞的蛋白信号分子,靶细胞可以通过受体配体结合或胞吞作用摄入EVs从而改变细胞的生理病理状态,成为细胞间信号互通的运载体,用于细胞间通讯。

2013年,美国科学家James E. Rothman、Randy W. Schekman和美籍德国科学家Thomas C. Sudhof因发现细胞外囊泡(EVs)运输调控机制而获得诺贝尔生理学或医学奖。同年,美国再生医学公司Aegle Therapeutics成立,成为历史上首家围绕外囊泡(EVs)进行产业开发的药企。

外囊泡(EVs)因其天然的材料运输特性、固有的长期循环能力、出色的生物相容性,而今已被视为最具潜力的药物递送载体,适合递送各种化学物质、蛋白质、核酸和基因治疗剂。同时,外囊泡(EVs)药物递送还具有穿越血脑屏障等优势。

围绕外囊泡(EVs)的递送潜力,2015年美国生物制药公司Codiak成立,这是历史上第一家将外囊泡(EVs)作为递送载体进行药物开发的生物技术公司。Codiak自主开发工程化外泌体,在外泌体腔内搭载具有特定治疗作用的药物,将其选择性递送至肿瘤微环境中的特定细胞。

药物递送全景图:从递送载体到靶向药物

在医药研发领域,药物递送系统并非只有药物载体一种形式,其递送系统的功能也并非仅限于将药物递送到靶标部位那么简单。为了更系统地了解药物递送体系,我们通过整理公开资料以及对业内从业者深度访谈,将药物递送系统进行了如下划分:

图片2.png

如图所示,我们将药物递送系统首先划分为了体外递送和体内递送两大类型,其中体外递送不是本文主要研究方向,本文研究主要还是围绕药物的各种体内递送方式展开。作者进一步将体内药物递送进行细分,分为了载体制剂递送和偶联靶向递送两种形式。

载体制剂递送代表的是需要通过独立载体包装后进行的药物递送,例如用以外囊泡为代表的天然载体、脂质体(LNP)为代表的人工微球、胶束为代表的分子聚合物,以及病毒载体等将药物搭载进载体腔内实现药物分子递送;偶联靶向递送则代指那些将靶向分子与药物分子通过化学键偶联起来形成创新药,这些药物自开发出来本身就具备靶向递送的能力,例如核酸载体药物、ADC药物等等。

本文将对这几种递送载体/药物进行盘点,对比其运载特点,并分析应用场景的差异化。

1载体制剂递送:从人工设计到改造天然载体,递送功能愈发完善

图片3.png

三大常用递送载体功能对比

脂质体(LNP)是目前产业界应用最广的递送载体,主要由磷脂和胆固醇制备而来,具有良好的生物相容性和可降解性,无毒无免疫原性。作为药物递送系统,脂质体(LNP)能有效地包裹各种水溶性的、离解常数不同的大小分子。

图片4.png

脂质体(LNP)结构示意图

由于脂质体(LNP)表面本身不带有“靶头”,所以脂质体多用来运载不需要靶向递送的药物。例如装载化疗药物、抗微生物及病毒药物、抗寄生虫药物、基因物质、疫苗、治疗蛋白质、抗炎症药物、激素和天然药物等。尤其是在mRNA疫苗递送上,脂质体(LNP)能够抵御核酸酶的作用,高效转染细胞,成为眼下脂质体(LNP)热门的应用场景。

当然,临床通过修饰脂质体的表面和改进功能,亦可以提高脂质体的靶向性,控制循环时间和作用部位。而通过改变脂质体(LNP)双层壳脂质的组成,又能发挥脂质体(LNP)不同的功能。

然而,以脂质体(LNP)为载体制备的mRNA制剂会在肝脏及脾脏聚集,难以靶向其他部位。由于脂质体(LNP)的潜在应用限制,载体技术仍有巨大提升空间,业内也正在探索脂质复合物、多聚体等递送载体。例如,斯微生物正在探索独特的LPP纳米递送平台,以聚合物包载mRNA为内核、磷脂包裹为外壳的双层结构。

病毒载体包装主要分为慢病毒(LV)、腺病毒(ADV)、腺相关病毒(AAV)三大类。

其中慢病毒是由人类免疫缺陷病毒(HIV)改造而来的一种病毒载体,属于逆转录病毒;腺相关病毒由直径约26nm的二十面体蛋白质衣壳和约4.7 kb的单链DNA基因组组成;腺病毒是一种直径约为90-100nm的无包膜病毒,具有广泛的细胞和组织感染能力,且腺病毒载体携带基因片段的容量大,能达到7-8kb的容量。

图片5.png

三种常用病毒载体特点对比

病毒载体中,慢病毒载体可以高效感染几乎所有细胞,AAV载体的递送效率也非常高,目前已经被应用于临床上的体内外基因治疗,是一个相对成熟的递送技术。但是病毒载体具有与基因组整合相关的关键缺陷、无法重复递送,以及可能的宿主排斥等短板。这些都成为病毒载体研究中亟待优化的部分。为了解决这些难点,产业界也做出了相应的努力。

在中国,本导基因就开发了一种新的类病毒(VLP)载体,利用mRNA茎环结构与噬菌体衣壳蛋白特异识别的原理,通过病毒工程技术,将病毒和mRNA两者的优点完美地结合起来,创造了新型递送技术VLP-mRNA,能够确保基因编辑酶在体内瞬时表达(72小时内降解),降低基因编辑脱靶概率,提高基因编辑药物的安全性。

在美国,基因治疗公司Ring therapeutics全球首创的“指环病毒”可以攻克传统病毒载体不能重复递送的痛点,与人类免疫系统相容,就算重复给药也不会诱发免疫反应,有利长期性治疗;且指环病毒载体带有环状单股DNA,不会产生和人体双股DNA融合,是较安全的载体平台。据悉,该病毒属于甲型细环病毒属,多以灵长类动物为宿主,遗传物质是环状单股DNA,基因组大小约3.5-3.8kb。

外囊泡(EVs)作为天然的生物大分子载体,具有免疫源性低、毒副作用小、可携带成分丰富(蛋白质、脂质、核酸、糖等)、全身循环、靶向递送等优势。已经被业内公认为最具潜力的递送载体。

1  2  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

医疗科技 猎头职位 更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号